statistical validation | Lean Six Sigma, Six Sigma Certification

Analyze Phase of Lean Six Sigma Project is the third phase. Following are the deliverable of this phase that Six Sigma Green Belt should deliver with her team:

Statistically Validate Root Causes

The data that has been collected in the Measure Phase is used to draw statistical associations between CTQ measures and causes. The causes that are statistically significant are the root causes. There are a variety of statistical tools to establish this association. Depending on the type of data – continuous or discrete – tools are selected. Such tests are generally called as Hypothesis tests. 2-t Test, Z-test, t-test, ANOVA, Chi-Square Test, Correlation, Regression, etc., are few common hypothesis tests.
The procedure to perform, and interpret all the above tests are usually covered in detail in Lean Six Sigma Green Belt Training programs.

Perform Value Stream Mapping & Process Value Analysis

Value Stream Mapping (VSM) is a popular tool used in Lean methodology; as an alternate approach to statistically identifying Root Causes, or in conjunction with it is the application of Value Stream Mapping and Process Value Analysis. It is used to identify the 7 types of Wastes (Muda – in Japanese) in a process. VSM is a holistic method to visually document the way in which value is getting built in a process.
The 7 types of process wastes are generally referred to as Non-Value Added tasks in conventional Six Sigma. The procedure of associating every task in a process as either Value Adding (VA), Non-Value Adding (NVA), or Value-Enabling (VE) is called as Process Value Analysis.
These methods are very useful in projects where extensive data collection is not possible, or in projects with Turn-Around Time or Delay reduction.

Control-Impact Matrix

The final deliverable of the Analyze phase is to summarize all the findings from Statistical validation or Process Value Analysis (& VSM) in a 2×2 matrix called as Control-Impact Matrix. It is important to ensure that the project doesn’t end up as an academic exercise or research study. Hence, the Lean Six Sigma team needs to identify root causes which have high impact, and well within the control of the team. This is done through a team discussion with the involvement of the project sponsor.
Once the root causes have been identified, & a formal Analyze Tollgate review is completed; the Lean Six Sigma Project is ready to move to the Improve Phase. Next >>>


Tags

Improve phase is the fourth phase of Lean Six Sigma projects. Following are the deliverable of this phase:

  • Identify Solutions to overcome the impact of root causes
  • Refine Solutions (FMEA, Poka-Yoke)
  • Pilot Solutions
  • Statistically validate results

Identify Solutions to overcome the impact of root causes

For each of the root causes identified in the Analyze phase, the Lean Six Sigma Team uses an apt structured or unstructured brainstorming method to generate various alternatives to overcome the problem. These techniques may include Channeling, Anti-solutions, Analogy, Wishful thinking, Random word stimulus methods, etc.
SCAMPER is another popular method which can be used by the Six Sigma Green Belt to systematically improve the current process using any of the following methods: Simplify or Substitute, Combine, Adapt, Modify, Put to different use, Eliminate & Reduce.
If there are too many options that the team has identified, then a variety of solution screening methods can be used to select the best solution for implementation. These screening methods include NGT (Nominal Group Technique), N/3 Voting, Criteria Based Matrix (CBT), etc.

Proposed solutions can be a new process, technology change, policy changes, alterations of inputs, measurement system refinement, customer, employee or vendor education, etc. In such cases, either revised process map, future state value stream mapping,  etc., may need to be proceeded.
The solution that the team has selected should directly impact the CTQ of the project. Six Sigma Green Belt should validate this.

Refining the Solutions (FMEA, Poka-Yoke)

Before implementing solutions, the Six Sigma Green Belt needs to ensure that the proposed solutions are complete and well refined. This will ensure that there are no delays, rework during implementation, and the full impact on CTQ is derived. In order to do this, a tool called Failure Modes Effect Analysis (FMEA) is used. The main purpose of this tool is to assess all the risks involved with a solution, and how to mitigate them by refining the solution before implementation. Risk Priority Number (RPN) derived from FMEA helps in prioritizing the risks and acting on them in a systematic manner.

Mistake-proofing (Poka-Yoke, in Japanese) is a method used to ensure that the proposed solution doesn’t create additional defects or errors. This can be used in conjunction with FMEA.
Pilot Solutions
Now the solution is ready for pilot. The purpose of the pilot is to assess its impact in a control group setting. Based on the qualitative and quantitative results of the pilot, necessary alternations can be incorporated to the final solution. Six Sigma Green Belt should closely work with the process owners during pilot to understand ground realities and build ownership.

Statistically validate results

In Lean Six Sigma Projects, it is an important step to statistically validate the impact on CTQ (before implementation & after Implementation). Hypothesis tests like 2-t test, ANOVA, Chi-square tests, etc., are used to perform this statistical validation. These tests help to identify if the improvement is significant or marginal in nature. Six Sigma Green Belt should be able to select and perform appropriate tests using statistical softwares.
On successful completion of these deliverable and formal Improve tollgate review, the Lean Six Sigma project team is ready to move to the Control phase.   Next >>>


Tags

Related Articles